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Overview

1. 7.4 Bounds on prediction error

2. 7.5 Variable or subset selection
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Prediction error

In the previous analysis, we have focused exclusively on the problem of parameter recovery in
noiseless and noisy settings. In other applications, we might be interested in finding a good
predictor, meaning a vector θ̂ ∈ Rd such that the mean-squared prediction error

‖X(θ̂ − θ∗)‖2
2

n
=

1

n

n∑
i=1

(〈xi , θ̂ − θ∗〉)2

is small. In general, the problem of finding a good predictor should be easier than estimating
θ∗ well in `2-norm because the prediction problem does not require that θ∗ even be identifiable.
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Prediction error bounds

Theorem 7.20 (Prediction error bounds)

Consider the Lagrangian Lasso with a strictly positive regularization parameter λn ≥ 2‖XTw
n ‖∞

(a) Any optimal solution θ̂ satisfies the bound

‖X(θ̂ − θ∗)‖2
2

n
≤ 12‖θ∗‖1λn

(b) If θ∗ is supported on a subset S of cardinality s, and the design matrix satisfies the
(κ; 3)− RE condition over S , then any optimal solution satisfies the bound

‖X(θ̂ − θ∗)‖2
2

n
≤ 9

κ
sλ2

n
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Remarks on 7.20(a)

Theorem 7.20 (Prediction error bounds)

Consider the Lagrangian Lasso with a strictly positive regularization parameter λn ≥ 2‖XTw
n ‖∞

(a) Any optimal solution θ̂ satisfies the bound

‖X(θ̂ − θ∗)‖2
2

n
≤ 12‖θ∗‖1λn

As previously discussed in Example 7.14, when the noise vector w has i.i.d. zero-mean
σ-sub-Gaussian entries and the design matrix is C -column normalized, the choice

λn = 2Cσ(
√

2 log d
n + δ) is valid with probability at least 1− 2e−

nδ2

2 . In this case, Theorem

7.20(a) implies the upper bound
‖X(θ̂−θ∗)‖2

2
n ≤ 24 ‖θ∗‖1 Cσ

(√
2 log d

n + δ

)
(slow rates) with

the same high probability.
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Remarks on 7.20(b)

Theorem 7.20 (Prediction error bounds)

Consider the Lagrangian Lasso with a strictly positive regularization parameter λn ≥ 2‖XTw
n ‖∞

(b) If θ∗ is supported on a subset S of cardinality s, and the design matrix satisfies the
(κ; 3)− RE condition over S , then any optimal solution satisfies the bound

‖X(θ̂ − θ∗)‖2
2

n
≤ 9

κ
sλ2

n

On the other hand, when θ∗ is s-sparse and in addition, the design matrix satisfies an RE

condition, then Theorem 7.20( b) guarantees the bound
‖X(θ̂−θ∗)‖2

2
n ≤ 72

κ C
2σ2

(
2s log d

n + sδ2
)

(fast rates) with the same high probability.
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Proof of Theorem 7.20(a)

We first show that ‖∆̂‖1 ≤ 4 ‖θ∗‖1 under the stated conditions, where ∆̂ = θ̂ − θ∗. From the
Lagrangian basic inequality L(θ̂;λn) ≤ L(θ∗;λn), we have

0 ≤ 1

2n
‖X∆̂‖2

2 ≤
wTX∆̂

n
+ λn

{
‖θ∗‖1 − ‖θ̂‖1

}
By Hölder’s inequality and our choice of λn, we have∣∣∣∣∣wTX∆̂

n

∣∣∣∣∣ ≤
∥∥∥∥XTw

n

∥∥∥∥
∞
‖∆̂‖1 ≤

λn
2
‖∆̂‖1 ≤

λn
2

{
‖θ∗‖1 + ‖θ̂‖1

}
,

where the final step also uses the triangle inequality. Putting together the pieces yields

0 ≤ wTX∆̂

n
+

∣∣∣∣∣wTX∆̂

n

∣∣∣∣∣ ≤ λn
2

{
‖θ∗‖1 + ‖θ̂‖1

}
+ λn

{
‖θ∗‖1 − ‖θ̂‖1

}
which implies ‖θ̂‖1 ≤ 3‖θ∗‖1 ⇒ ‖∆̂‖1 ≤ ‖θ∗‖1 + ‖θ̂‖1 ≤ 4 ‖θ∗‖1
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Proof of 7.20(a)

We can now complete the proof. Returning to our earlier inequality

1

2n
‖X∆̂‖2

2 ≤
wTX∆̂

n
+ λn

{
‖θ∗‖1 − ‖θ̂‖1

}
First term:

wTX∆̂

n
≤

∣∣∣∣∣wTX∆̂

n

∣∣∣∣∣ ≤
∥∥∥∥XTw

n

∥∥∥∥
∞
‖∆̂‖1 ≤

λn
2
‖∆̂‖1

Second term: λn
{
‖θ∗‖1 − ‖θ̂‖1

}
= λn{‖θ∗‖1 − ‖θ∗ + ∆̂‖1} ≤ λn‖∆̂‖1

These two inequalities imply

‖X∆̂‖2
2

n
≤ 3λn‖∆̂‖1 ≤ 12λn‖θ̂∗‖1
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Proof of 7.20(b)

In this case, the same argument as in the proof of Theorem 7.13(a) leads to the basic
inequality

‖X∆̂‖2
2

n
≤ 3λn‖∆̂S‖1 ≤ 3λn

√
s‖∆̂‖2

Similarly, the proof of Theorem 7.13(a) shows that the error vector ∆̂ belongs to C3(S),
whence the (κ; 3)− RE condition can be applied, this time to the right-hand side of the basic
inequality. Doing so yields

‖∆̂‖2 ≤

√
1

κ

‖X∆̂‖2
2

n
=

1√
κ

‖X∆̂‖2√
n

and hence that
‖X∆̂‖2√

n
≤ 3√

κ

√
sλn
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Variable or subset selection

Thus far, we have focused on results that guarantee that either the `2-error or the prediction
error of the Lasso is small. In other settings, we are interested in a somewhat more refined
question, namely whether or not a Lasso estimate θ̂ has non-zero entries in the same positions
as the true regression vector θ∗.
In terms of the Lasso, we ask the following question: given an optimal Lasso solution , when is
its support set - denoted by S(θ̂) - exactly equal to the true support S(θ∗)? We refer to this
property as variable selection consistency.
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7.5.1 Variable selection consistency for the Lasso

For variable selection, we consider the following conditions:

Conditions

(A3) Lower eigenvalue: The smallest eigenvalue of the sample covariance submatrix indexed by
S is bounded below:

γmin

(
XT
S XS

n

)
≥ cmin > 0

(A4) Mutual incoherence: There exists some α ∈ [0, 1) such that

max
j∈Sc
‖(XT

S XS)−1XT
SXj‖1 ≤ α
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Remarks on Condition (A3)

Conditions

(A3) Lower eigenvalue: The smallest eigenvalue of the sample covariance submatrix indexed by
S is bounded below:

γmin

(
XT
S XS

n

)
≥ cmin > 0

Condition (A3) is very mild: it would be required in order to ensure that the model is
identifiable, even if the support set S were known a priori. If assumption (A3) were violated,
then the submatrix XS would have a non-trivial nullspace, leading to a non-identifiable model.
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Remarks on Condition (A4)

Conditions

(A4) Mutual incoherence: There exists some α ∈ [0, 1) such that

max
j∈Sc
‖(XT

S XS)−1XT
SXj‖1 ≤ α

Suppose that we tried to predict the column vector Xj using a linear combination of the
columns of Xs . The best weight vector ω̂ ∈ R|S | is given by

ω̂ = arg min
ω∈R|S|

‖Xj − XSω‖2
2 = (XT

S XS)−1XT
SXj

and the mutual incoherence condition is a bound on ‖ω̂‖1. In the ideal case, if the column
space of XS were orthogonal to Xj , then the optimal weight vector ω̂ would be identically zero.
In general, we cannot expect this orthogonality to hold, but the mutual incoherence condition
(A4) imposes a type of approximate orthogonality.
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Main theorem

Theorem 7.21

Consider an S-sparse linear regression model for which the design matrix satisfies conditions
(A3) and (A4). Then for any choice of regularization parameter such that

λn ≥
2

1− α
‖XT

Sc ΠS⊥(X)
w

n
‖∞ (7.44)

where ΠS⊥(X) = In − XS(XT
S XS)−1XT

S , the Lagrangian Lasso has the following properties:

(a) Uniqueness: There is a unique optimal solution θ̂.

(b) No false inclusion: This solution has its support set Ŝ contained within the true support
set S.
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Main theorem

Theorem 7.21

(c) `∞-bounds: The error θ̂ − θ∗ satisfies

‖θ̂S − θ∗S‖∞ ≤

∥∥∥∥∥
(

XT
S XS

n

)−1

XT
S

w

n

∥∥∥∥∥
∞

+

∥∥∥∥∥
(

XT
S XS

n

)−1
∥∥∥∥∥
−1

∞

λn︸ ︷︷ ︸
B(λn;X)

(7.45)

where ‖A‖∞ = maxi=1 . . . si
∑

j |Aij | is the matrix `∞-norm.

(d) No false exclusion: The Lasso includes all indices i ∈ S such that |θ∗i | > B (λn; X) , and
hence is variable selection consistent if mini∈S |θ∗i | > B (λn; X).
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Main theorem

Corollary 7.22

Consider the S-sparse linear model based on a noise vector w with zero-mean i.i.d.
σ-sub-Gaussian entries, and a deterministic design matrix X that satisfies assumptions (A3)
and (A4), as well as the C -column normalization condition

(
maxj=1,...,d ‖Xj‖2 /

√
n ≤ C

)
.

Suppose that we solve the Lagrangian Lasso with regularization parameter

λn = 2Cσ
1−α{

√
2 log(d−s)

n + δ} for some δ > 0. Then the optimal solution θ is unique with its
support contained within S , and satisfies the `∞-error bound

‖θ̂S − θ∗S‖∞ ≤
σ
√
cmin

{√
2 log s

n
+ δ

}
+

∥∥∥∥∥
(

XT
S XS

n

)−1
∥∥∥∥∥
∞

λn

all with probability at least 1− 4e−
nδ2

2 .
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Proof of Corollary 7.22

We first verify that the given choice of regularization parameter satisfies the bound (7.44) with
high probability. It suffices to bound the maximum absolute value of the random variables

Zj := XT
j

[
In − XS

(
XT
S XS

)−1
XT
S

]
︸ ︷︷ ︸

Πs⊥(X)

(w
n

)
for j ∈ Sc

Since ΠS⊥(X) is an orthogonal projection matrix, we have

‖ΠS⊥(X)Xj‖2 ≤ ‖Xj‖2 ≤ C
√
n

Therefore, each variable Zj is sub-Gaussian with parameter at most C 2σ2/n. From standard
sub-Gaussian tail bounds (Chapter 2), we have

P
[

max
j∈Sc
|Zj | ≥ t

]
≤ 2(d − s)e−

nt2

2C2σ2

from which we see that our choice of λn ensures that the bound (7.44) holds with the claimed
probability.
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Proof of Corollary 7.22

The only remaining step is to simplify the `∞-bound (7.45). The second term in this bound is
a deterministic quantity, so we focus on bounding the first term. For each i = 1, . . . , s,
consider the random variable Z̃i := eTi ( 1

nXT
S XS)−1XT

Sw/n. Since the elements of the vector w

are i.i.d. σ-sub-Gaussian, the variable Z̃i is zero-mean and sub-Gaussian with parameter at
most

σ2

n

∥∥∥∥∥
(

1

n
XT
S XS

)−1
∥∥∥∥∥

2

≤ σ2

cminn

where we have used the eigenvalue condition (A3). Consequently, for any δ > 0, we have

P
[

maxi=1,...,s

∣∣∣Z̃i

∣∣∣ > σ√
cmin

{√
2 log s

n + δ

}]
≤ 2e−

nδ2

2 , from which the claim follows.
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Remarks on Corollary 7.22

Corollary 7.22 applies to linear models with a fixed matrix X of covariates. An analogous result
- albeit with a more involved proof - can be proved for Gaussian random covariate matrices.
Exercise 7.19 shows that the incoherence condition holds with high probability with
n % s log(d − s).
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Proof of Theorem 7.21

For the Lagrangian Lasso program, we say that a pair (θ̂, ẑ) ∈ Rd × Rd is primal-dual optimal
if θ̂ is a minimizer and ẑ ∈ ∂‖θ̂‖1. Any such pair must satisfy the zero-subgradient condition

1

n
XT(Xθ̂ − y) + λnẑ = 0 (7.48)

Our proof of Theorem 7.21 is based on a constructive procedure, known as a primal-dual
witness method, which constructs a pair (̂θ, ẑ) satisfying the zero-subgradient condition (7.48)
and such that θ̂ has the correct signed support. When this procedure succeeds, the
constructed pair is primal-dual optimal, and acts as a witness for the fact that the Lasso has a
unique optimal solution with the correct signed support.
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Proof of Theorem 7.21

Primal–dual witness (PDW) construction

1. Set θ̂Sc = 0.

2. Determine (θ̂S , ẑS) ∈ Rs × Rs by solving the oracle subproblem

θ̂S ∈ arg min
θs∈Rs

{ 1

2n
‖y − XSθS‖2

2︸ ︷︷ ︸
=:f (θs)

+λn ‖θS‖1} (7.49)

and then choosing ẑS ∈ ∂‖θ̂S‖1 such that ∇f (θS) |
θS=θ̂S

+ λnẑS = 0.

3. Solve for ẑSc ∈ Rd−s via the zero-subgradient equation (7.48), and check whether or not
the strict dual feasibility condition ‖ẑSc‖∞ < 1 holds.
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Remarks on PDW

By construction, the subvectors θ̂S , ẑS and ẑSc satisfy the zero-subgradient condition (7.48).
By using the fact that θ̂Sc = θ∗Sc = 0 and writing out this condition in block matrix form, we
obtain

1

n

[
XT
S XS XT

S XSc

XT
Sc XS XT

ScXSc

] [
θ̂S − θ∗S

0

]
− 1

n

[
XT
Sw

XT
Scw

]
+ λn

[
ẑS
ẑSc

]
=

[
0
0

]
(7.50)

We say that the PDW construction succeeds if the vector ẑS constructed in step 3 satisfies he
strict dual feasibility condition.

Lemma 7.23

If the lower eigenvalue condition (A3) holds, then success of the PDW construction implies
that the vector (θ̂S , 0) ∈ Rd is the unique optimal solution of the Lasso.
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Proof of Lemma 7.23

Let θ̃ be any other optimal solution. If we introduce the shorthand notation
F (θ) = 1

2n‖y − Xθ‖2
2, then we are guaranteed that

F (θ̂) + λn(ẑ , θ̂〉 = F (θ̃) + λn‖θ̃‖1

F (θ̂)− λn〈ẑ , θ̃ − θ̂〉 = F (θ̃) + λn

(
‖θ̃‖1 − 〈ẑ , θ̃〉

)
But by the zero-subgradient conditions (7.48), we have λnẑ = −∇F (θ̂), which implies that

F (θ̂) + 〈∇F (θ̂), θ̃ − θ̂〉 − F (θ̃) = λn

(
‖θ̃‖1 − 〈ẑ , θ̃〉

)
⇒ ‖θ̃‖1 ≤ 〈ẑ , θ̃〉 ≤ ‖z̃‖∞‖θ̃‖1 ≤ ‖θ̃‖1

⇒ ‖θ̃‖1 = 〈ẑ , θ̃〉
Since ‖ẑSc‖∞ < 1, this equality can only occur if θ̃j = 0 for all j ∈ Sc . Thus, all optimal
solutions are supported only on S , and hence can be obtained by solving the oracle
subproblem (7.49). Given the lower eigenvalue condition (A3), this subproblem is strictly
convex, and so has a unique minimizer.

23 / 32



Proof of Theorem 7.21

To prove Theorem 7.21(a) and (b), it suffices to show that the vector ẑSc ∈ Rd−s constructed
in step 3 satisfies the strict dual feasibility condition. From (7.50),

ẑSc = − 1

λnn
XT
Sc XS(θ̂S − θ∗S) + XT

Sc

(
w

λnn

)
θ̂S − θ∗S = (XT

S XS)−1XT
Sw − λnn(XT

S XS)−1ẑS

⇒ ẑSc = XT
Sc XS(XT

S XS)−1ẑS︸ ︷︷ ︸
µ

+ XT
Sc

[
I − XS(XT

S XS)−1XT
S

]( w

λnn

)
︸ ︷︷ ︸

VSc

⇒ ‖ẑSc ‖∞ ≤‖µ ‖∞+‖VSc‖∞ ≤ α + (1− α)/2 = (1 + α)/2 < 1

by the mutual incoherence condition (A4) and our choice of regularization parameter λn.
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Proof of Theorem 7.21

It remains to establish a bound on the `∞-norm of the error θ̂S − θ∗S . From equation

θ̂S − θ∗S = (XT
S XS)−1XT

Sw − λnn(XT
S XS)−1ẑS

and the triangle inequality, we have

∥∥∥θ̂S − θ∗s∥∥∥
∞
≤

∥∥∥∥∥
(

XT
S XS

n

)−1

XT
S

w

n

∥∥∥∥∥
∞

+

∥∥∥∥∥
(

XT
S XS

n

)−1
∥∥∥∥∥
−1

∞

λn

which completes the proof.
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Extension to random Gaussian ensembles

The previous section treated the case of a deterministic X , which allowed for a relatively
straightforward analysis. We now turn to the more complex case of random design matrix
X ∈ Rn×p, in which each row xi , i = 1, . . . , n is chosen as an i.i.d. Gaussian random vector
with covariance matrix Σ.

Conditions

(A5) Lower eigenvalue: The smallest eigenvalue of the covariance submatrix indexed by S is
bounded below:

γmin (ΣSS) ≥ cmin > 0

(A6) Mutual incoherence: There exists some α ∈ [0, 1) such that

max
j∈Sc
‖ΣjSΣ−1

SS ‖1 ≤ α
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Main theorem

Theorem

Consider the family of regularization parameters λn(φd) =

√
φdρu(ΣSc |S )

(1−α)2
2σ2 log(d)

n where

ΣSc |S := ΣScSc − ΣScS (ΣSS)−1 ΣSSc , φd ≥ 2, ρu(A) = maxi Aii . If for some fixed δ > 0,

n, d , s and λn satisfy n
2s log(d−s) > (1 + δ)

ρu(ΣSc |S )

cmin(1−α)2

(
1 + σ2cmin

λ2
ns

)
then the following properties

holds with probability greater than 1− c1e
−c2 min{s,log(d−s)}

(a) The Lasso has a unique solution θ̂ with support contained within S .

(b)

‖θ̂S − θ∗S‖∞ ≤ c3λn

∥∥∥Σ
−1/2
SS

∥∥∥2

∞
+ 20

√
σ2 log s

cminn︸ ︷︷ ︸
B(λn)
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Proof

As with the proof of Theorem 7.21, the proof is based on the PDW method and we need to
verify the strict dual feasibility condition

‖ẑSc‖∞ < 1

For j ∈ Sc , define
W = XSc − XSΣ−1

SS ΣSSc ∈ Rn×(d−s)

where W is independent of XS and Wij ∼ N(0, [ΣSc |S ]jj). Then

ẑSc = ΣScSΣ−1
SS ẑS︸ ︷︷ ︸

A

+WT

{
XS(XT

S XS)−1ẑS + ΠX⊥S

(
w

λnn

)}
︸ ︷︷ ︸

B

ẑSc ,j = Aj + Bj = ΣjSΣ−1
SS ẑS + WT

j

{
XS(XT

S XS)−1ẑS + ΠX⊥S

(
w

λnn

)}
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Proof

By condition (A6),
max
j∈Sc
|Aj | ≤ α

Since var (Wij) =
[
ΣSc |S

]
jj
≤ ρu

(
ΣSc |S

)
, conditioned on XS and w , the quantity Bj is

zero-mean Gaussian with variance at most

var (Bj) ≤ ρu(ΣSc |S)
∥∥∥XS

(
XT
S XS

)−1
ẑS + ΠX

S⊥

(
w
λnn

)∥∥∥2

2

= ρu

{
1

n
ẑTS

(
XT
S XS

n

)−1

ẑS +

∥∥∥∥ΠX
S⊥

(
w

λnn

)∥∥∥∥2

2

}
︸ ︷︷ ︸

Mn
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Proof

Lemma

For any ε ∈ (0, 1/2), define the event T̄ (ε) =
{
Mn > M̄n(ε)

}
, where

M̄n(ε) :=

(
1 + max

{
ε,

8

cmin

√
s

n

})(
s

cminn
+

σ2

λ2
nn

)
Then P(T̄ (ε)) ≤ 4 exp

(
−c1 min

{
nε2, s

})
for some c1 > 0.

P
[

max
j∈Sc
|Bj | ≥ (1− α)

]
= P

[
max
j∈Sc
|Bj | ≥ (1− α)|T̄ c(ε)

]
P[T̄ c(ε)]

+ P
[

max
j∈Sc
|Bj | ≥ (1− α)|T̄ (ε)

]
P[T̄ (ε)]

≤ P
[

max
j∈Sc
|Bj | ≥ (1− α) | T̄ c(ε)

]
+ 4 exp

(
−c1 min

{
nε2, k

})
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Proof

Conditioned on T̄ c(ε), the variance of Bj is at most ρu(ΣSc |S)M̄n(ε), so that by standard
Gaussian tail bounds, we obtain the upper bound

P

[
max
j∈Sc
|Bj | ≥ (1− α) | T̄ c(ε)

]
≤ 2(d − s) exp

(
− (1− α)2

2ρuM̄n(ε)

)
Reference: M. J. Wainwright, ”Sharp Thresholds for High-Dimensional and Noisy Sparsity
Recovery Using `1 -Constrained Quadratic Programming (Lasso),” in IEEE Transactions on
Information Theory, vol. 55, no. 5, pp. 2183-2202, May 2009, doi:
10.1109/TIT.2009.2016018.
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The End
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